Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Biol ; 1(1)2023.
Article in English | MEDLINE | ID: mdl-38124711

ABSTRACT

Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in ß-cells can drive ß-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in ß-cells. Mice harboring Ercc1-deficient ß-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in ß-cells and a significant loss of ß-cell mass. Using electron microscopy, we identified ß-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some ß-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in ß-cells also resulted in loss of ß-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient ß-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive ß-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.

2.
Metabolism ; 117: 154711, 2021 04.
Article in English | MEDLINE | ID: mdl-33493548

ABSTRACT

BACKGROUND: Type 2 diabetes (T2DM) is an age-associated disease characterized by hyperglycemia due to insulin resistance and decreased beta-cell function. DNA damage accumulation has been associated with T2DM, but whether DNA damage plays a role in the pathogenesis of the disease is unclear. Here, we used mice deficient for the DNA excision-repair gene Ercc1 to study the impact of persistent endogenous DNA damage accumulation on energy metabolism, glucose homeostasis and beta-cell function. METHODS: ERCC1-XPF is an endonuclease required for multiple DNA repair pathways and reduced expression of ERCC1-XPF causes accelerated accumulation of unrepaired endogenous DNA damage and accelerated aging in humans and mice. In this study, energy metabolism, glucose metabolism, beta-cell function and insulin sensitivity were studied in Ercc1d/- mice, which model a human progeroid syndrome. RESULTS: Ercc1d/- mice displayed suppression of the somatotropic axis and altered energy metabolism. Insulin sensitivity was increased, whereas, plasma insulin levels were decreased in Ercc1d/- mice. Fasting induced hypoglycemia in Ercc1d/- mice, which was the result of increased glucose disposal. Ercc1d/- mice exhibit a significantly reduced beta-cell area, even compared to control mice of similar weight. Glucose-stimulated insulin secretion in vivo was decreased in Ercc1d/- mice. Islets isolated from Ercc1d/- mice showed increased DNA damage markers, decreased glucose-stimulated insulin secretion and increased susceptibility to apoptosis. CONCLUSION: Spontaneous DNA damage accumulation triggers an adaptive response resulting in improved insulin sensitivity. Loss of DNA repair, however, does negatively impacts beta-cell survival and function in Ercc1d/- mice.


Subject(s)
DNA Repair/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Insulin Resistance/genetics , Insulin-Secreting Cells/physiology , Insulin/genetics , Aging/genetics , Animals , Apoptosis/genetics , Cell Survival/genetics , DNA Damage/genetics , Diabetes Mellitus, Type 2/genetics , Glucose/genetics , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...